
Acta Numerica (2006), pp. 327–384 c© Cambridge University Press, 2006

doi: 10.1017/S0962492906240017 Printed in the United Kingdom

Numerical linear algebra in data mining

Lars Eldén

Department of Mathematics,
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Ideas and algorithms from numerical linear algebra are important in several
areas of data mining. We give an overview of linear algebra methods in text
mining (information retrieval), pattern recognition (classification of hand-
written digits), and PageRank computations for web search engines. The
emphasis is on rank reduction as a method of extracting information from a
data matrix, low-rank approximation of matrices using the singular value de-
composition and clustering, and on eigenvalue methods for network analysis.

CONTENTS

1 Introduction 327
2 Vectors and matrices in data mining 329
3 Data compression: low-rank approximation 333
4 Text mining 341
5 Classification and pattern recognition 358
6 Eigenvalue methods in data mining 367
7 New directions 377
References 378

1. Introduction

1.1. Data mining

In modern society huge amounts of data are stored in databases with the
purpose of extracting useful information. Often it is not known at the
occasion of collecting the data what information is going to be requested,
and therefore the database is often not designed for the distillation of
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any particular information, but rather it is to a large extent unstructured.
The science of extracting useful information from large data sets is usually
referred to as ‘data mining’, sometimes along with ‘knowledge discovery’.

There are numerous application areas of data mining, ranging from
e-business (Berry and Linoff 2000, Mena 1999) to bioinformatics (Bergeron
2002), from scientific application such as astronomy (Burl, Asker, Smyth,
Fayyad, Perona, Crumpler and Aubele 1998), to information retrieval
(Baeza-Yates and Ribeiro-Neto 1999) and Internet search engines (Berry
and Browne 2005).

Data mining is a truly interdisciplinary science, where techniques from
computer science, statistics and data analysis, pattern recognition, linear
algebra and optimization are used, often in a rather eclectic manner. Be-
cause of the practical importance of the applications, there are now numer-
ous books and surveys in the area. We cite a few here: Christianini and
Shawe-Taylor (2000), Cios, Pedrycz and Swiniarski (1998), Duda, Hart and
Storck (2001), Fayyad, Piatetsky-Shapiro, Smyth and Uthurusamy (1996),
Han and Kamber (2001), Hand, Mannila and Smyth (2001), Hastie, Tibshi-
rani and Friedman (2001), Hegland (2001) and Witten and Frank (2000).

The purpose of this paper is not to give a comprehensive treatment of
the areas of data mining, where linear algebra is being used, since that
would be a far too ambitious undertaking. Instead we will present a few
areas in which numerical linear algebra techniques play an important role.
Naturally, the selection of topics is subjective, and reflects the research
interests of the author.

This survey has three themes, as follows.

(1) Information extraction from a data matrix by a rank reduction process.

By determining the ‘principal direction’ of the data, the ‘dominating’
information is extracted first. Then the data matrix is deflated (explicitly
or implicitly) and the same procedure is repeated. This can be formalized
using the Wedderburn rank reduction procedure (Wedderburn 1934), which
is the basis of many matrix factorizations.

The second theme is a variation of the rank reduction idea.

(2) Data compression by low-rank approximation: A data matrix A ∈
R

m×n, where m and n are large, will be approximated by a rank-k
matrix,

A ≈ WZT , W ∈ R
m×k, Z ∈ R

n×k,

where k ≪ min(m, n).

In many applications the data matrix is huge, and difficult to use for
storage and efficiency reasons. Thus, one evident purpose of compression is
to obtain a representation of the data set that requires less memory than the
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original data set, and that can be manipulated more efficiently. Sometimes
one wishes to obtain a representation that can be interpreted as the ‘main
directions of variation’ of the data, the principal components. This is done by
building the low-rank approximation from the left and right singular vectors
of A that correspond to the largest singular values. In some applications,
e.g., information retrieval (see Section 4) it is possible to obtain better
search results from the compressed representation than from the original
data. There the low-rank approximation also serves as a ‘denoising device’.

(3) Self-referencing definitions that can be formulated mathematically as
eigenvalue and singular value problems.

The most well-known example is the Google PageRank algorithm, which is
based on the notion that the importance of a web page depends on how
many inlinks it has from other important pages.

2. Vectors and matrices in data mining

Often the data are numerical, and the data points can be thought of as
belonging to a high-dimensional vector space. Ensembles of data points can
then be organized as matrices. In such cases it is natural to use concepts
and techniques from linear algebra.

Example 2.1. Handwritten digit classification is a sub-area of pattern
recognition. Here vectors are used to represent digits. The image of one
digit is a 16× 16 matrix of numbers, representing grey-scale. It can also be
represented as a vector in R

256, by stacking the columns of the matrix.
A set of n digits (handwritten 3s, say) can then be represented by matrix

A ∈ R
256×n, and the columns of A can be thought of as a cluster. They

also span a subspace of R
256. We can compute an approximate basis of this

subspace using the singular value decomposition (SVD) A = UΣV T . Three
basis vectors of the ‘3-subspace’ are illustrated in Figure 2.1. The digits are
taken from the US Postal Service database (see, e.g., Hastie et al. (2001)).

Let b be a vector representing an unknown digit, and assume that one
wants to determine, automatically using a computer, which of the digits
0–9 the unknown digit represents. Given a set of basis vectors for 3s,
u1, u2, . . . , uk, we may be able to determine whether b is a 3 or not, by
checking if there is a linear combination of the k basis vectors,

∑k
j=1 xjuj ,

such that the residual b − ∑k
j=1 xjuj is small. Thus, we determine the co-

ordinates of b in the basis {uj}k
j=1, which is equivalent to solving a least

squares problem with the data matrix Uk = (u1 . . . uk).
In Section 5 we discuss methods for classification of handwritten digits.
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Figure 2.1. Handwritten digits from the US Postal Service
data base, and basis vectors for 3s (bottom).

It also happens that there is a natural or perhaps clever way of encoding
non-numerical data so that the data points become vectors. We will give
a couple of such examples from text mining (information retrieval) and
Internet search engines.

Example 2.2. Term-document matrices are used in information retrieval.
Consider the following set of five documents. Key words, referred to as
terms, are marked in boldface.1

Document 1: The Google matrix P is a model of the Internet.

Document 2: Pij is nonzero if there is a link from web page j to i.

Document 3: The Google matrix is used to rank all web pages

Document 4: The ranking is done by solving a matrix eigenvalue
problem.

Document 5: England dropped out of the top 10 in the FIFA
ranking.

Counting the frequency of terms in each document, we get the result shown
in Table 2.1. The total set of terms is called the dictionary. Each document

1 To avoid making the example too large, we have ignored some words that would nor-
mally be considered as terms. Note also that only the stem of a word is significant:
‘ranking’ is considered the same as ‘rank’.
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Table 2.1.

Term Doc. 1 Doc. 2 Doc. 3 Doc. 4 Doc. 5

eigenvalue 0 0 0 1 0
England 0 0 0 0 1
FIFA 0 0 0 0 1
Google 1 0 1 0 0
Internet 1 0 0 0 0
link 0 1 0 0 0
matrix 1 0 1 1 0
page 0 1 1 0 0
rank 0 0 1 1 1
web 0 1 1 0 0

is represented by a vector in R
10, and we can organize the data as a term-

document matrix,

A =




0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
1 0 1 0 0
1 0 0 0 0
0 1 0 0 0
1 0 1 1 0
0 1 1 0 0
0 0 1 1 1
0 1 1 0 0




∈ R
10×5.

Assume that we want to find all documents that are relevant with respect to
the query ‘ranking of web pages’. This is represented by a query vector,
constructed in an analogous way to the term-document matrix, using the
same dictionary,

q =




0
0
0
0
0
0
0
1
1
1




∈ R
10.
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Figure 2.2.

Thus the query itself is considered as a document. The information retrieval
task can now be formulated as a mathematical problem: find the columns of
A that are close to the vector q. To solve this problem we use some distance
measure in R

10.
In information retrieval it is common that m is large, of the order 106,

say. As most of the documents only contain a small fraction of the terms
in the dictionary, the matrix is sparse.

In some methods for information retrieval, linear algebra techniques (e.g.,
singular value decomposition (SVD)) are used for data compression and
retrieval enhancement. We discuss vector space methods for information
retrieval in Section 4.

The very idea of data mining is to extract useful information from large
and often unstructured sets of data. Therefore it is necessary that the
methods used are efficient and often specially designed for large problems.
In some data mining applications huge matrices occur.

Example 2.3. The task of extracting information from all the web pages
available on the Internet is performed by search engines. The core of the
Google search engine2 is a matrix computation, probably the largest that is
performed routinely (Moler 2002). The Google matrix P is assumed to be
of dimension of the order billions (2005), and it is used as a model of (all)
the web pages on the Internet.

In the Google PageRank algorithm the problem of assigning ranks to all
the web pages is formulated as a matrix eigenvalue problem. Let all web
pages be ordered from 1 to n, and let i be a particular web page. Then Oi

will denote the set of pages that i is linked to, the outlinks. The number of
outlinks is denoted Ni = |Oi|. The set of inlinks, denoted Ii, are the pages

2 http://www.google.com.
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that have an outlink to i. Now define Q to be a square matrix of dimension
n, and let

Qij =

{
1/Nj , if there is a link from j to i,

0, otherwise.

This definition means that row i has nonzero elements in those positions
that correspond to inlinks of i. Similarly, column j has nonzero elements
equal to 1/Nj in those positions that correspond to the outlinks of j.

The link graph in Figure 2.2 illustrates a set of web pages with outlinks
and inlinks. The corresponding matrix becomes

Q =




0 1
3 0 0 0 0

1
3 0 0 0 0 0

0 1
3 0 0 1

3
1
2

1
3 0 0 0 1

3 0
1
3

1
3 0 0 0 1

2

0 0 1 0 1
3 0




.

Define a vector r, which holds the ranks of all pages. The vector r is then
defined3 as the eigenvector corresponding to the eigenvalue λ = 1 of Q:

λr = Qr. (2.1)

We shall discuss some numerical aspects of the PageRank computation in
Section 6.1.

3. Data compression: low-rank approximation

3.1. Wedderburn rank reduction

One way of measuring the information contents in a data matrix is to com-
pute its rank. Obviously, linearly dependent column or row vectors are
redundant, as they can be replaced by linear combinations of the other, lin-
early independent columns. Therefore, one natural procedure for extracting
information from a data matrix is to systematically determine a sequence of
linearly independent vectors, and deflate the matrix by subtracting rank-one
matrices, one at a time. It turns out that this rank reduction procedure is
closely related to matrix factorization, data compression, dimension reduc-
tion, and feature selection/extraction. The key link between the concepts is
the Wedderburn rank reduction theorem.

3 This definition is provisional since it does not take into account the mathematical
properties of Q: as the problem is formulated so far, there is usually no unique solution
of the eigenvalue problem.
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Theorem 3.1. (Wedderburn 1934) Suppose A ∈ R
m×n, f ∈ R

n×1,
and g ∈ R

m×1. Then

rank(A − ω−1AfgT A) = rank(A) − 1,

if and only if ω = gT Af �= 0.

Based on Theorem 3.1 a stepwise rank reduction procedure can be defined:
Let A(1) = A, and define a sequence of matrices {A(i)}

A(i+1) = A(i) − ω−1
i A(i)f (i)g(i)T A(i), (3.1)

for any vectors f (i) ∈ R
n×1 and g(i) ∈ R

m×1, such that

ωi = g(i)T A(i)f (i) �= 0. (3.2)

The sequence defined in (3.1) terminates in r = rank(A) steps, since each
time the rank of the matrix decreases by one. This process is called a rank-
reducing process and the matrices A(i) are called Wedderburn matrices. For
details, see Chu, Funderlic and Golub (1995). The process gives a matrix
rank-reducing decomposition,

A = F̂Ω−1ĜT , (3.3)

where

F̂ =
(
f̂1, . . . , f̂r

)
∈ R

m×r, f̂i = A(i)f (i), (3.4)

Ω = diag(ω1, . . . , ωr) ∈ R
r×r, (3.5)

Ĝ =
(
ĝ1, . . . , ĝr

)
∈ R

n×r, ĝi = A(i)T g(i). (3.6)

Theorem 3.1 can be generalized to the case where the reduction of rank is
larger than one, as shown in the next theorem.

Theorem 3.2. (Guttman 1957) Suppose A ∈ R
m×n, F ∈ R

n×k, and
G ∈ R

m×k. Then

rank(A − AFR−1GT A) = rank(A) − rank(AFR−1GT A), (3.7)

if and only if R = GT AF ∈ R
k×k is nonsingular.

Chu et al. (1995) discuss Wedderburn rank reduction from the point of
view of solving linear systems of equations. There are many choices of F
and G that satisfy the condition (3.7). Therefore, various rank-reducing
decompositions (3.3) are possible. It is shown that several standard matrix
factorizations in numerical linear algebra are instances of the Wedderburn
formula: Gram–Schmidt orthogonalization, singular value decomposition,
QR and Cholesky decomposition, as well as the Lanczos procedure.



Numerical linear algebra in data mining 335

A complementary view is taken in data analysis4 (see Hubert, Meulman
and Heiser (2000)), where the Wedderburn formula and matrix factoriza-
tions are considered as tools for data analysis: ‘The major purpose of a
matrix factorization in this context is to obtain some form of lower-rank ap-
proximation to A for understanding the structure of the data matrix . . . ’.

One important difference in the way the rank reduction is treated in data
analysis and in numerical linear algebra, is that in algorithm descriptions
in data analysis the subtraction of the rank-one matrix ω−1AfgT A is often
done explicitly, whereas in numerical linear algebra it is mostly implicit. One
notable example is the Partial Least Squares method (PLS) that is widely
used in chemometrics. PLS is equivalent to Lanczos bidiagonalization: see
Section 3.4. This difference in description is probably the main reason why
the equivalence between PLS and Lanczos bidiagonalization has not been
widely appreciated in either community, even though it was pointed out
quite early (Wold, Ruhe, Wold and Dunn 1984).

The application of the Wedderburn formula to data mining is further
discussed in Park and Eldén (2005).

3.2. SVD, Eckart–Young optimality, and principal component analysis

We will here give a brief account of the SVD, its optimality properties
for low-rank matrix approximation, and its relation to principal component
analysis (PCA). For a more detailed exposition, see, e.g., Golub and Van
Loan (1996).

Theorem 3.3. Any matrix A ∈ R
m×n, with m ≥ n, can be factorized

A = UΣV T , Σ =

(
Σ0

0

)
∈ R

m×n, Σ0 = diag(σ1, . . . , σn),

where U ∈ R
m×m and V ∈ R

n×n are orthogonal, and σ1 ≥ σ2 ≥ · · ·σn ≥ 0.

The assumption m ≥ n is no restriction. The σi are the singular values,
and the columns of U and V are left and right singular vectors, respectively.

Suppose that A has rank r. Then σr > 0, σr+1 = 0, and

A = UΣV T =
(
Ur Ûr

) (
Σr 0
0 0

)(
V T

r

V̂ T
r

)
= UrΣrV

T
r , (3.8)

where Ur ∈ R
m×r, Σr = diag(σ1, . . . , σr) ∈ R

r×r, and Vr ∈ R
n×r. From (3.8)

4 It is interesting to note that several of the linear algebra ideas used in data mining were
originally conceived in applied statistics and data analysis, especially in psychometrics.
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we see that the columns of U and V provide bases for all four fundamental
subspaces of A:

Ur gives an orthogonal basis for Range(A),

V̂r gives an orthogonal basis for Null(A),
Vr gives an orthogonal basis for Range(AT ),

Ûr gives an orthogonal basis for Null(AT ),

where Range and Null denote the range space and the null space of the
matrix, respectively.

Often it is convenient to write the SVD in outer product form, i.e., express
the matrix as a sum of rank-one matrices,

A =

r∑

i=1

σiuiv
T
i . (3.9)

The SVD can be used to compute the rank of a matrix. However, in
floating point arithmetic, the zero singular values usually appear as small
numbers. Similarly, if A is made up from a rank-k matrix and additive
noise of small magnitude, then it will have k singular values that will be
significantly larger than the rest. In general, a large relative gap between two
consecutive singular values is considered to reflect numerical rank deficiency
of a matrix. Therefore, ‘noise reduction’ can be achieved via a truncated
SVD. If trailing small diagonal elements of Σ are replaced by zeros, then a
rank-k approximation Ak of A is obtained as

A =
(
Uk Ûk

) (
Σk 0

0 Σ̂k

)(
V T

k

V̂ T
k

)

≈
(
Uk Ûk

) (
Σk 0
0 0

) (
V T

k

V̂ T
k

)
= UkΣkV

T
k =: Ak, (3.10)

where Σk ∈ R
k×k and ‖Σ̂k‖ < ǫ for a small tolerance ǫ.

The low-rank approximation of a matrix obtained in this way from the
SVD has an optimality property specified in the following theorem (Eckart
and Young 1936, Mirsky 1960), which is the foundation of numerous im-
portant procedures in science and engineering. An orthogonally invariant
matrix norm is one, for which ‖QAP‖ = ‖A‖, where Q and P are arbitrary
orthogonal matrices (of conforming dimensions). The matrix 2-norm and
the Frobenius norm are orthogonally invariant.

Theorem 3.4. Let ‖ · ‖ denote any orthogonally invariant norm, and let
the SVD of A ∈ R

m×n be given as in Theorem 3.3. Assume that an integer
k is given with 0 < k ≤ r = rank(A). Then

min
rank(B)=k

‖A − B‖ = ‖A − Ak‖,
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where

Ak = UkΣkV
T
k =

k∑

i=1

σiuiv
T
i . (3.11)

From the theorem we see that the singular values indicate how close a
given matrix is to a matrix of lower rank.

The relation between the truncated SVD (3.11) and the Wedderburn ma-
trix rank reduction process can be demonstrated as follows. In the rank
reduction formula (3.7), define the error matrix E as

E = A − AF (GT AF )−1GT A, F ∈ R
n×k, G ∈ R

m×k.

Assume that k ≤ rank(A) = r, and consider the problem

min ‖E‖ = min
F∈Rn×k,G∈Rm×k

‖A − AF (GT AF )−1GT A‖,

where the norm is orthogonally invariant. According to Theorem 3.4, the
minimum error is obtained when

(AF )(GT AF )−1(GT A) = UkΣkV
T
k ,

which is equivalent to choosing F = Vk and G = Uk.
This same result can be obtained by a stepwise procedure, when k pairs

of vectors f (i) and g(i) are to be found, where each pair reduces the matrix
rank by 1.

The Wedderburn procedure helps to elucidate the equivalence between the
SVD and principal component analysis (PCA) (Joliffe 1986). Let X ∈ R

m×n

be a data matrix, where each column is an observation of a real-valued
random vector. The matrix is assumed to be centred, i.e., the mean of each
column is equal to zero. Let the SVD of X be X = UΣV T . The right
singular vectors vi are called principal component directions of X (Hastie
et al. 2001, p. 62). The vector

z1 = Xv1 = σ1u1

has the largest sample variance amongst all normalized linear combinations
of the columns of X:

Var(z1) = Var(Xv1) =
σ2

1

m
.

Finding the vector of maximal variance is equivalent, using linear algebra
terminology, to maximizing the Rayleigh quotient:

σ2
1 = max

v �=0

vT XT Xv

vT v
, v1 = arg max

v �=0

vT XT Xv

vT v
.

The normalized variable u1 is called the normalized first principal com-
ponent of X. The second principal component is the vector of largest sample
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variance of the deflated data matrix X−σ1u1v
T
1 , and so on. Any subsequent

principal component is defined as the vector of maximal variance subject to
the constraint that it is orthogonal to the previous ones.

Example 3.5. PCA is illustrated in Figure 3.1. 500 data points from
a correlated normal distribution were generated, and collected in a data
matrix X ∈ R

3×500. The data points and the principal components are
illustrated in the top plot. We then deflated the data matrix: X1 := X −
σ1u1v

T
1 . The data points corresponding to X1 are given in the bottom plot;

they lie on a plane in R
3, i.e., X1 has rank 2.

The concept of principal components has been generalized to principal
curves and surfaces: see Hastie (1984) and Hastie et al. (2001, Section
14.5.2). A recent paper along these lines is Einbeck, Tutz and Evers (2005).

3.3. Generalized SVD

The SVD can be used for low-rank approximation involving one matrix. It
often happens that two matrices are involved in the criterion that determines
the dimension reduction: see Section 4.4. In such cases a generalization of
the SVD to two matrices can be used to analyse and compute the dimension
reduction transformation.

Theorem 3.6. (GSVD) Let A ∈ R
m×n, m ≥ n, and B ∈ R

p×n. Then
there exist orthogonal matrices U ∈ R

m×m and V ∈ R
p×p, and a nonsingular

X ∈ R
n×n, such that

UT AX = C = diag(c1, . . . , cn), 1 ≥ c1 ≥ · · · ≥ cn ≥ 0, (3.12)

V T BX = S = diag(s1, . . . , sq), 0 ≤ s1 ≤ · · · ≤ sq ≤ 1, (3.13)

where q = min(p, n) and

CT C + ST S = I.

A proof can be found in Golub and Van Loan (1996, Section 8.7.3); see
also Van Loan (1976) and Paige and Saunders (1981).

The generalized SVD is sometimes called the Quotient SVD.5 There is
also a different generalization, called the Product SVD : see, e.g., De Moor
and Van Dooren (1992), Golub, Sølna and Van Dooren (2000).

3.4. Partial least squares: Lanczos bidiagonalization

Linear least squares (regression) problems occur frequently in data mining.
Consider the minimization problem

min
β

‖y − Xβ‖, (3.14)

5 Assume that B is square and nonsingular. Then the GSVD gives the SVD of AB−1.
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components (top). The same data with the contributions
along the first principal component deflated (bottom).
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where X is an m × n real matrix, and the norm is the Euclidean vector
norm. This is the linear least squares problem in numerical linear algebra,
and the multiple linear regression problem in statistics. Using regression ter-
minology, the vector y consists of observations of a response variable, and
the columns of X contain the values of the explanatory variables. Often
the matrix is large and ill-conditioned: the column vectors are (almost) lin-
early dependent. Sometimes, in addition, the problem is under-determined,
i.e., m < n. In such cases the straightforward solution of (3.14) may be
physically meaningless (from the point of view of the application at hand)
and difficult to interpret. Then one may want to express the solution by
projecting it onto a lower-dimensional subspace: let W be an n × k ma-
trix with orthonormal columns. Using this as a basis for the subspace, one
considers the approximate minimization

min
β

‖y − Xβ‖ ≈ min
z

‖y − XWz‖. (3.15)

One obvious method for projecting the solution onto a low-dimensional sub-
space is principal components regression (PCR) (Massy 1965), where the
columns of W are chosen as right singular vectors from the SVD of X. In
numerical linear algebra this is called truncated singular value decomposition
(TSVD). Another such projection method, the partial least squares (PLS)
method (Wold 1975), is standard in chemometrics (Wold, Sjöström and
Eriksson 2001). It has been known for quite some time (Wold et al. 1984)
(see also Helland (1988), Di Ruscio (2000), Phatak and de Hoog (2002))
that PLS is equivalent to Lanczos (Golub–Kahan) bidiagonalization (Golub
and Kahan 1965, Paige and Saunders 1982) (we will refer to this as LBD).
The equivalence is further discussed in Eldén (2004b), and the properties of
PLS are analysed using the SVD.

There are several variants of PLS: see, e.g., Frank and Friedman (1993).
The following is the so-called NIPALS version.

The NIPALS PLS algorithm

1 X0 = X

2 for i = 1, 2, . . . , k

(a) wi = 1
‖XT

i−1
y‖

XT
i−1y

(b) ti = 1
‖Xi−1wi‖

Xi−1wi

(c) pi = XT
i−1ti

(d) Xi = Xi−1 − tip
T
i

In the statistics/chemometrics literature the vectors wi, ti, and pi are
called weight , score, and loading vectors, respectively.
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It is obvious that PLS is a Wedderburn procedure. One advantage of PLS
for regression is that the basis vectors in the solution space (the columns
of W (3.15)) are influenced by the right-hand side.6 This is not the case in
PCR, where the basis vectors are singular vectors of X. Often PLS gives a
higher reduction of the norm of the residual y − Xβ for small values of k
than does PCR.

The Lanczos bidiagonalization procedure can be started in different ways:
see, e.g., Björck (1996, Section 7.6). It turns out that PLS corresponds to
the following formulation.

Lanczos Bidiagonalization (LBD)

1 v1 = 1
‖XT y‖

XT y; α1u1 = Xv1

2 for i = 2, . . . , k

(a) γi−1vi = XT ui−1 − αi−1vi−1

(b) αiui = Xvi − γi−1ui−1

The coefficients γi−1 and αi are determined so that ‖vi‖ = ‖ui‖ = 1.

Both algorithms generate two sets of orthogonal basis vectors: (wi)
k
i=1 and

(ti)
k
i=1 for PLS, (vi)

k
i=1 and (ui)

k
i=1 for LBD. It is straightforward to show

(directly using the equations defining the algorithm – see Eldén (2004b))
that the two methods are equivalent.

Proposition 3.7. The PLS and LBD methods generate the same orthog-

onal bases, and the same approximate solution, β
(k)
pls = β

(k)
lbd.

4. Text mining

By text mining we understand methods for extracting useful information
from large and often unstructured collections of texts. A related term is in-
formation retrieval. A typical application is search in databases of abstract
of scientific papers. For instance, in medical applications one may want to
find all the abstracts in the database that deal with a particular syndrome.
So one puts together a search phrase, a query, with key words that are rele-
vant to the syndrome. Then the retrieval system is used to match the query
to the documents in the database, and present to the user all the documents
that are relevant, preferably ranked according to relevance.

6 However, it is not always appreciated that the dependence of the basis vectors on the
right-hand side is non-linear and quite complicated. For a discussion of these aspects
of PLS, see Eldén (2004b).
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Example 4.1. The following is a typical query:

9. the use of induced hypothermia in heart surgery, neurosurgery, head injuries and
infectious diseases.

The query is taken from a test collection of medical abstracts, called Med-
line.7 We will refer to this query as Q9 from here on.

Another well-known area of text mining is web search engines. There the
search phrase is usually very short, and often there are so many relevant
documents that it is out of the question to present them all to the user. In
that application the ranking of the search result is critical for the efficiency
of the search engine. We will come back to this problem in Section 6.1.

For overviews of information retrieval, see, e.g., Korfhage (1997) and
Grossman and Frieder (1998). In this section we will describe briefly one of
the most common methods for text mining, namely the vector space model
(Salton, Yang and Wong 1975). In Example 2.2 we demonstrated the basic
ideas of the construction of a term-document matrix in the vector space
model. Below we first give a very brief overview of the preprocessing that
is usually done before the actual term-document matrix is set up. Then we
describe a variant of the vector space model: latent semantic indexing (LSI)
(Deerwester, Dumais, Furnas, Landauer and Harsman 1990), which is based
on the SVD of the term-document matrix. For a more detailed account of
the different techniques used in connection with the vector space model, see
Berry and Browne (2005).

4.1. Vector space model: preprocessing and query matching

In information retrieval, key words that carry information about the con-
tents of a document are called terms. A basic task is to create a list of all
the terms in alphabetic order, a so-called index. But before the index is
made, two preprocessing steps should be done: (1) eliminate all stop words,
(2) perform stemming.

Stop words are extremely common words. The occurrence of such a word
in a document does not distinguish it from other documents. The following
is the beginning of one stop list:8

a, a’s, able, about, above, according, accordingly, across, actually, after, afterwards,
again, against, ain’t, all, allow, allows, almost, alone, along, already, also, although,
always, am, among, amongst, an, and, . . .

7 See, e.g., http://www.dcs.gla.ac.uk/idom/ir-resources/test-collections/
8 ftp://ftp.cs.cornell.edu/pub/smart/english.stop
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Stemming is the process of reducing each word that is conjugated or has
a suffix to its stem. Clearly, from the point of view of information retrieval,
no information is lost in the following reduction:

computable
computation
computing
computed

computational





−→ comput

Public domain stemming algorithms are available on the Internet.9

A number of pre-processed documents are parsed,10 giving a term-docu-
ment matrix A ∈ R

m×n, where m is the number of terms in the dictionary
and n is the number of documents. It is common not only to count the oc-
currence of terms in documents but also to apply a term-weighting scheme,
where the elements of A are weighted depending on the characteristics of the
document collection. Similarly, document weighting is usually done. A num-
ber of schemes are described in Berry and Browne (2005, Section 3.2.1). For
example, one can define the elements in A by

aij = fij log(n/ni), (4.1)

where fij is the term frequency, the number of times term i appears in
document j, and ni is the number of documents that contain term i (inverse
document frequency). If a term occurs frequently in only a few documents,
then both factors are large. In this case the term discriminates well between
different groups of documents, and it gets a large weight in the documents
where it appears.

Normally, the term-document matrix is sparse: most of the matrix ele-
ments are equal to zero. Then, of course, one avoids storing all the zeros,
and instead uses a sparse matrix storage scheme (see, e.g., Saad (2003,
Chapter 3) and Goharian, Jain and Sun (2003)).

Example 4.2. For the stemmed Medline collection (cf. Example 4.1) the
matrix (including 30 query columns) is 4163 × 1063 with 48263 nonzero
elements, i.e., approximately 1%. The first 500 rows and columns of the
matrix are illustrated in Figure 4.1.

The query (cf. Example 4.1) is parsed using the same dictionary as the
documents, giving a vector q ∈ R

m. Query matching is the process of finding

9 http://www.tartarus.org/~martin/PorterStemmer/.
10 Public domain text parsers are described in Giles, Wo and Berry (2003) and Zeimpekis

and Gallopoulos (2005).



344 L. Eldén

0

0

50

100

100

150

200

200

250

300

300

350

400

400

450

500
500

nz = 2685

Figure 4.1. The first 500 rows and columns of the Medline
matrix. Each dot represents a nonzero element.

all documents that are considered relevant to a particular query q. This is
often done using the cosine distance measure: all documents are returned
for which

qT aj

‖q‖2 ‖aj‖2
> tol, (4.2)

where tol is a predefined tolerance. If the tolerance is lowered, then more
documents are returned, and then it is likely that more of the documents
that are relevant to the query are returned. But at the same time there is
a risk that more documents that are not relevant are also returned.

Example 4.3. We did query matching for query Q9 in the stemmed Med-
line collection. With tol = 0.19 only document 409 was considered relevant.
When the tolerance was lowered to 0.17, then documents 409, 415, and 467
were retrieved.

We illustrate the different categories of documents in a query matching
for two values of the tolerance in Figure 4.2. The query matching produces
a good result when the intersection between the two sets of returned and
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RELEVANT

DOCUMENTS DOCUMENTS

RETURNED

ALL DOCUMENTS

Figure 4.2. Returned and relevant documents for two
values of the tolerance. The dashed circle represents
the returned documents for a high value of the cosine
tolerance.

relevant documents is as large as possible, and the number of returned
irrelevant documents is small. For a high value of the tolerance, the retrieved
documents are likely to be relevant (the small circle in Figure 4.2). When
the cosine tolerance is lowered, then the intersection is increased, but at the
same time, more irrelevant documents are returned.

In performance modelling for information retrieval we define the following
measures:

precision P =
Dr

Dt

,

where Dr is the number of relevant documents retrieved, and Dt the total
number of documents retrieved; and

recall R =
Dr

Nr

,

where Nr is the total number of relevant documents in the data base. With
the cosine measure, we see that with a large value of tol we have high
precision, but low recall. For a small value of tol we have high recall, but
low precision.

In the evaluation of different methods and models for information retrieval
usually a number of queries are used. For testing purposes all documents
have been read by a human and those that are relevant to a certain query
are marked.
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Figure 4.3. Query matching for Q9 using the
vector space method. Recall versus precision.

Example 4.4. We did query matching for query Q9 in the Medline collec-
tion (stemmed) using the cosine measure, and obtained recall and precision
as illustrated in Figure 4.3. In the comparison of different methods it is more
illustrative to draw the recall versus precision diagram. Ideally a method
has high recall at the same time as the precision is high. Thus, the closer
the curve is to the upper right corner, the better the method.

In this example and the following examples the matrix elements were
computed using term frequency and inverse document frequency weight-
ing (4.1).

4.2. LSI: latent semantic indexing

Latent semantic indexing11 (LSI) ‘is based on the assumption that there is
some underlying latent semantic structure in the data . . . that is corrupted
by the wide variety of words used . . . ’ (quoted from Park, Jeon and Rosen
(2001)) and that this semantic structure can be enhanced by projecting the
data (the term-document matrix and the queries) onto a lower-dimensional
space using the singular value decomposition. LSI is discussed in Deerwester
et al. (1990), Berry, Dumais and O’Brien (1995), Berry, Drmac and Jessup
(1999), Berry (2001), Jessup and Martin (2001) and Berry and Browne
(2005).

11 Sometimes also called latent semantic analysis (LSA) (Jessup and Martin 2001).
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Let A = UΣV T be the SVD of the term-document matrix and approxi-
mate it by a matrix of rank k:

A ≈ = Uk(ΣkVk) =: UkDk.

The columns of Uk live in the document space and are an orthogonal ba-
sis that we use to approximate all the documents: column j of Dk holds
the coordinates of document j in terms of the orthogonal basis. With
this k-dimensional approximation the term-document matrix is represented
by Ak = UkDk, and in query matching we compute qT Ak = qT UkDk =
(UT

k q)T Dk. Thus, we compute the coordinates of the query in terms of the
new document basis and compute the cosines from

cos θj =
qT
k (Dkej)

‖qk‖2 ‖Dkej‖2
, qk = UT

k q. (4.3)

This means that the query matching is performed in a k-dimensional space.

Example 4.5. We did query matching for Q9 in the Medline collection,
approximating the matrix using the truncated SVD of rank 100. The recall–
precision curve is given in Figure 4.4. It is seen that for this query LSI
improves the retrieval performance. In Figure 4.5 we also demonstrate a
fact that is common to many term-document matrices: it is rather well con-
ditioned, and there is no gap in the sequence of singular values. Therefore,
we cannot find a suitable rank of the LSI approximation by inspecting the
singular values: it must be determined by retrieval experiments.

Another remarkable fact is that with k = 100 the approximation error in
the matrix approximation,

‖A − Ak‖F

‖A‖F

≈ 0.8,

is large, and we still get improved retrieval performance. In view of the
large approximation error in the truncated SVD approximation of the term-
document matrix, one may question whether the ‘optimal’ singular vectors
constitute the best basis for representing the term-document matrix. On
the other hand, since we get such good results, perhaps a more natural
conclusion may be that the Frobenius norm is not a good measure of the
information contents in the term-document matrix.
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Figure 4.4. Query matching for Q9. Recall versus
precision for the full vector space model (solid
line) and the rank-100 approximation (dashed).
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Figure 4.5. First 100 singular values
of the Medline (stemmed) matrix.



Numerical linear algebra in data mining 349

It is also interesting to see what are the most important ‘directions’ in
the data. From Theorem 3.4 we know that the first few left singular vec-
tors are the dominant directions in the document space, and their largest
components should indicate what these directions are. The Matlab state-
ments find(abs(U(:,k))>0.13), combined with look-up in the dictionary
of terms, gave the results shown in Table 4.1, for k=1,2.

Table 4.1.

U(:,1) U(:,2)

cell case
growth cell
hormone children
patient defect

dna
growth
patient
ventricular

It should be said that LSI does not give significantly better results for all
queries in the Medline collection: there are some where it gives results com-
parable to the full vector model, and some where it gives worse performance.
However, it is often the average performance that matters.

Jessup and Martin (2001) made a systematic study of different aspects of
LSI. They showed that LSI improves retrieval performance for surprisingly
small values of the reduced rank k. At the same time the relative matrix
approximation errors are large. It is probably not possible to prove any
general results for LSI that explain how and for which data it can improve
retrieval performance. Instead we give an artificial example (constructed
using ideas similar to those of a corresponding example in Berry and Browne
(2005)) that gives a partial explanation.

Example 4.6. Consider the term-document matrix from Example 2.2,
and the query ‘ranking of web pages’. Obviously, Documents 1–4 are
relevant with respect to the query, while Document 5 is totally irrelevant.
However, we obtain the following cosines for query and the original data:

(
0 0.6667 0.7746 0.3333 0.3333

)
.

We then compute the SVD of the term-document matrix, and use a rank-
two approximation. After projection to the two-dimensional subspace the
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Figure 4.6. The documents and the query projected to
the coordinate system of the first two left singular vectors.

cosines, computed according to (4.3), are
(
0.7857 0.8332 0.9670 0.4873 0.1819

)
.

It turns out that Document 1, which was deemed totally irrelevant to the
query in the original representation, is now highly relevant. In addition,
the scores for the relevant Documents 2–4 have been reinforced. At the
same time, the score for Document 5 has been significantly reduced. Thus,
in this artificial example, the dimension reduction enhanced the retrieval
performance. The improvement may be explained as follows.

In Figure 4.6 we plot the five documents and the query in the coordinate
system of the first two left singular vectors. Obviously, in this representa-
tion, the first document is is closer to the query than Document 5. The first
two left singular vectors are

u1 =




0.1425
0.0787
0.0787
0.3924
0.1297
0.1020
0.5348
0.3647
0.4838
0.3647




,




0.2430
0.2607
0.2607
−0.0274
0.0740
−0.3735
0.2156
−0.4749
0.4023
−0.4749




,
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and the singular values are Σ= diag(2.8546, 1.8823, 1.7321, 1.2603, 0.8483).
The first four columns in A are strongly coupled via the words Google,
matrix, etc., and those words are the dominating contents of the document
collection (cf. the singular values). This shows in the composition of u1.
So even if none of the words in the query is matched by Document 1, that
document is so strongly correlated to the the dominating direction that it
becomes relevant in the reduced representation.

4.3. Clustering and least squares

Clustering is widely used in pattern recognition and data mining. We give
here a brief account of the application of clustering to text mining.

Clustering is the grouping together of similar objects. In the vector space
model for text mining, similarity is defined as the distance between points
in R

m, where m is the number of terms in the dictionary. There are many
clustering methods, e.g., the k-means method, agglomerative clustering,
self-organizing maps, and multi-dimensional scaling: see the references in
Dhillon (2001), Dhillon, Fan and Guan (2001).

The relation between the SVD and clustering is explored in Dhillon (2001);
see also Zha, Ding, Gu, He and Simon (2002) and Dhillon, Guan and Kulis
(2005). Here the approach is graph-theoretic. The sparse term-document
matrix represents a bi-partite graph, where the two sets of vertices are the
documents {dj} and the terms {ti}. An edge (ti, dj) exists if term ti occurs
in document dj , i.e., if the element in position (i, j) is nonzero. Clustering
the documents is then equivalent to partitioning the graph. A spectral par-
titioning method is described, where the eigenvectors of a Laplacian of the
graph are optimal partitioning vectors. Equivalently, the singular vectors of
a related matrix can be used. It is of some interest that spectral clustering
methods are related to algorithms for the partitioning of meshes in parallel
finite element computations: see, e.g., Simon, Sohn and Biswas (1998).

Clustering for text mining is discussed in Dhillon and Modha (2001) and
Park, Jeon and Rosen (2003), and the similarities between LSI and cluster-
ing are pointed out in Dhillon and Modha (2001).

Given a partitioning of a term-document matrix into k clusters,

A =
(
A1 A2 · · · Ak

)
, (4.4)

where Aj ∈ R
nj , one can take the centroid of each cluster,12

c(j) =
1

nj

Aje
(j), e(j) =

(
1 1 · · · 1

)T
, (4.5)

with e(j) ∈ R
nj , as a representative of the class. Together the centroid

12 In Dhillon and Modha (2001) normalized centroids are called concept vectors.
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Figure 4.7. Query matching for Q9. Recall versus
precision for the full vector space model (solid line)
and the rank-50 centroid approximation (dashed).

vectors can be used as an approximate basis for the document collection,
and the coordinates of each document with respect to this basis can be
computed by solving the least squares problem

min
D

‖A − CD‖F , C =
(
c(1) c(2) · · · c(k)

)
. (4.6)

Example 4.7. We did query matching for Q9 in the Medline collection.
Before computing the clustering we normalized the columns to equal Eu-
clidean length. We approximated the matrix using the orthonormalized
centroids from a clustering into 50 clusters. The recall–precision diagram
is given in Figure 4.7. We see that for high values of recall, the centroid
method is as good as the LSI method with double the rank: see Figure 4.4.

For rank 50 the approximation error in the centroid method,

‖A − CD‖F /‖A‖F ≈ 0.9,

is even higher than for LSI of rank 100.
The improved performance can be explained in a similar way as for LSI.

Being the ‘average document’ of a cluster, the centroid captures the main
links between the dominant documents in the cluster. By expressing all
documents in terms of the centroids, the dominant links are emphasized.
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4.4. Clustering and linear discriminant analysis

When centroids are used as basis vectors, the coordinates of the documents
are computed from (4.6) as

D := GT A, GT = R−1QT ,

where C = QR is the thin QR decomposition13 of the centroid matrix.
The criterion for choosing G is based on approximating the term-document
matrix A as well as possible in the Frobenius norm. As we have seen earlier
(Examples 4.5 and 4.7), a good approximation of A is not always necessary
for good retrieval performance, and it may be natural to look for other
criteria for determining the matrix G in a dimension reduction.

Linear discriminant analysis (LDA) is frequently used for classification
(Duda et al. 2001). In the context of cluster-based text mining, LDA is
used to derive a transformation G, such that the cluster structure is as well
preserved as possible in the dimension reduction.

In Howland, Jeon and Park (2003) and Howland and Park (2004) the ap-
plication of LDA to text mining is explored, and it is shown how the GSVD
(Theorem 3.6) can be used to extend the dimension reduction procedure to
cases where the standard LDA criterion is not valid.

Assume that a clustering of the documents has been made as in (4.4) with
centroids (4.5). Define the overall centroid

c = Ae, e =
1√
n

(
1 1 · · · 1

)T
,

the three matrices14

R
m×n ∋ Hw =

(
A1 − c(1)e(1)T A2 − c(2)e(2)T . . . Ak − c(k)e(k)T

)
,

R
m×k ∋ Hb =

(√
n1(c

(1) − c)
√

n2(c
(2) − c) . . .

√
nk(c

(k) − c)
)
,

R
m×n ∋ Hm = A − c eT ,

and the corresponding scatter matrices

Sw = HwHT
w ,

Sb = HbH
T
b ,

Sm = HmHT
m.

Assume that we want to use the (dimension-reduced) clustering for clas-
sifying new documents, i.e., determine to which cluster they belong. The
‘quality of the clustering’ with respect to this task depends on how ‘tight’

13 The thin QR decomposition of a matrix A ∈ R
m×n, with m ≥ n, is A = QR, where

Q ∈ R
m×n has orthonormal columns and R is upper triangular.

14 Note: subscript w for ‘within classes’, b for ‘between classes’.
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or coherent each cluster is, and how well separated the clusters are. The
overall tightness (‘within-class scatter’) of the clustering can be measured as

Jw = tr(Sw) = ‖Hw‖2
F ,

and the separateness (‘between-class scatter’) of the clusters by

Jb = tr(Sb) = ‖Hb‖2
F .

Ideally, the clusters should be separated at the same time as each cluster is
tight. Different quality measures can be defined. Often in LDA one uses

J =
tr(Sb)

tr(Sw)
, (4.7)

with the motivation that if all the clusters are tight then Sw is small, and
if the clusters are well separated then Sb is large. Thus the quality of the
clustering with respect to classification is high if J is large. Similar measures
are considered in Howland and Park (2004).

Now assume that we want to determine a dimension reduction transfor-
mation, represented by the matrix G ∈ R

m×d, such that the quality of the
reduced representation is as high as possible. After the dimension reduction,
the tightness and separateness are

Jb(G) = ‖GT Hb‖2
F = tr(GT SbG),

Jw(G) = ‖GT Hw‖2
F = tr(GT SwG).

Since rank(Hb) ≤ k − 1, it is only meaningful to choose d = k − 1: see
Howland et al. (2003).

The question arises whether it is possible to determine G so that, in a
consistent way, the quotient Jb(G)/Jw(G) is maximized. The answer is
derived using the GSVD of HT

w and HT
b . We assume that m > n; see

Howland et al. (2003) for a treatment of the general (but with respect to
the text mining application more restrictive) case. We further assume

rank

(
HT

b

HT
w

)
= t.

Under these assumptions the GSVD has the form (Paige and Saunders 1981)

HT
b = UT Σb(Z 0)QT , (4.8)

HT
w = V T Σw(Z 0)QT , (4.9)

where U and V are orthogonal, Z ∈ R
t×t is nonsingular, and Q ∈ R

m×m is
orthogonal. The diagonal matrices Σb and Σw will be specified shortly. We
first see that, with

G̃ = QT G =

(
G̃1

G̃2

)
, G̃1 ∈ R

t×d,
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we have

Jb(G) = ‖ΣbZG̃1‖2
F , Jw(G) = ‖ΣwZG̃1‖2

F . (4.10)

Obviously, we should not waste the degrees of freedom in G by choosing a
nonzero G̃2, since that would not affect the quality of the clustering after
dimension reduction. Next we specify

R
(k−1)×t ∋ Σb =




Ib 0 0
0 Db 0
0 0 0b


,

R
n×t ∋ Σw =




0w 0 0
0 Dw 0
0 0 Iw


,

where Ib ∈ R
(t−s)×(t−s) and Iw ∈ R

r×r are identity matrices with data-
dependent values of r and s, and 0b ∈ R

1×r and 0w ∈ R
(n−s)×(t−s) are zero

matrices. The diagonal matrices satisfy

Db = diag(αr+1, . . . , αr+s), αr+1 ≥ · · · ≥ αr+s > 0, (4.11)

Dw = diag(βr+1, . . . , βr+s), 0 < βr+1 ≤ · · · ≤ βr+s, (4.12)

and α2
i +β2

i = 1, i = r+1, . . . , r+s. Note that the column-wise partitionings
of Σb and Σw are identical. Now we define

Ĝ = ZG̃1 =




Ĝ1

Ĝ2

Ĝ3


,

where the partitioning conforms with that of Σb and Σw. Then we have

Jb(G) = ‖ΣbĜ‖2
F = ‖Ĝ1‖2

F + ‖DbĜ2‖2
F ,

Jw(G) = ‖ΣwĜ‖2
F = ‖DwĜ2‖2

F + ‖Ĝ3‖2
F .

At this point we see that the maximization of

Jb(G)

Jw(G)
=

tr(ĜT ΣT
b ΣbĜ)

tr(ĜT ΣT
wΣwĜ)

(4.13)

is not a well-defined problem: We can make Jb(G) large simply by choosing

Ĝ1 large, without changing Jw(G). On the other hand, (4.13) can be con-
sidered as the Rayleigh quotient of a generalized eigenvalue problem (see,
e.g., Golub and Van Loan (1996, Section 8.7.2)), where the largest set of
eigenvalues are infinite (since the first eigenvalues of ΣT

b Σb and ΣT
wΣw are 1

and 0, respectively), and the following are α2
r+i/β2

r+i, i = 1, 2, . . . , s. With
this in mind it is natural to constrain the data of the problem so that

ĜT Ĝ = I. (4.14)
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We see that, under this constraint,

Ĝ =

(
I
0

)
, (4.15)

is a (non-unique) solution of the maximization of (4.13). Consequently, the
transformation matrix G is chosen as

G = Q

(
Z−1Ĝ

0

)
= Q

(
Y1

0

)
,

where Y1 denotes the first k − 1 columns of Z−1.
LDA-based dimension reduction was tested in Howland et al. (2003) on

data (abstracts) from the Medline database. Classification results were
obtained for the compressed data, with much better precision than using
the full vector space model.

4.5. Text mining using Lanczos bidiagonalization (PLS)

In LSI and cluster-based methods, the dimension reduction is determined
completely from the term-document matrix, and therefore it is the same
for all query vectors. In chemometrics it has been known for a long time
that PLS (Lanczos bidiagonalization) often gives considerably more efficient
compression (in terms of the dimensions of the subspaces used) than PCA
(LSI/SVD), the reason being that the right-hand side (of the least squares
problem) determines the choice of basis vectors.

In a series of papers (see Blom and Ruhe (2005)), the use of Lanczos
bidiagonalization for text mining has been investigated. The recursion starts
with the normalized query vector and computes two orthonormal bases15 P
and Q.

Lanczos Bidiagonalization

1 q1 = q/‖q‖2, β1 = 0, p0 = 0.

2 for i = 2, . . . , k

(a) αipi = AT qi − βipi−1.

(b) βi+1qi+1 = Apk − αiqi.

The coefficients αi and βi+1 are determined so that ‖pi‖2 = ‖qi+1‖2 = 1.

15 We use a slightly different notation here to emphasize that the starting vector is dif-
ferent from that in Section 3.4.
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Define the matrices

Qi =
(
q1 q2 · · · qi

)
,

Pi =
(
p1 p2 · · · pi

)
,

Bi+1,i =




α1

β2 α2

. . . αi

βi+1


.

The recursion can be formulated as matrix equations,

AT Qi = PiB
T
i,i,

APi = Qi+1Bi+1,i. (4.16)

If we compute the thin QR decomposition of Bi+1,i,

Bi+1,i = Hi+1,i+1R,

then we can write (4.16)

APi = WiR, Wi = Qi+1Hi+1,i+1,

which means that the columns of Wi are an approximate orthogonal basis
of the document space (cf. the corresponding equation AVi = UiΣi for the
LSI approximation, where we use the columns of Ui as basis vectors). Thus
we have

A ≈ WiDi, Di = W T
i A, (4.17)

and we can use this low-rank approximation in the same way as in the LSI
method.

The convergence of the recursion can be monitored by computing the
residual ‖APiz − q‖2. It is easy to show (see, e.g., Blom and Ruhe (2005))
that this quantity is equal in magnitude to a certain element in the matrix
Hi+1,i+1. When the residual is smaller than a prescribed tolerance, the
approximation (4.17) is deemed good enough for this particular query.

In this approach the matrix approximation is recomputed for every query.
This has the following advantages.

(1) Since the right-hand side influences the choice of basis vectors, only
a very few steps of the bidiagonalization algorithm need be taken.
Blom and Ruhe (2005) report tests for which this algorithm performed
better, with k = 3, than LSI with subspace dimension 259.

(2) The computation is relatively cheap, the dominating cost being a small
number of matrix-vector multiplications.
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(3) Most information retrieval systems change with time, when new docu-
ments are added. In LSI this necessitates the updating of the SVD of
the term-document matrix. Unfortunately, it is quite expensive to up-
date an SVD. The Lanczos-based method, on the other hand, adapts
immediately and at no extra cost to changes of A.

5. Classification and pattern recognition

5.1. Classification of handwritten digits using SVD bases

Computer classification of handwritten digits is a standard problem in pat-
tern recognition. The typical application is automatic reading of zip codes
on envelopes. A comprehensive review of different algorithms is given in
LeCun, Bottou, Bengio and Haffner (1998).

Figure 5.1. Handwritten digits from
the US Postal Service database.

In Figure 5.1 we illustrate handwritten digits that we will use in the
examples in this section.

We will treat the digits in three different, but equivalent ways:

(1) 16 × 16 grey-scale images,

(2) functions of two variables,

(3) vectors in R
256.

In the classification of an unknown digit it is necessary to compute the
distance to known digits. Different distance measures can be used, perhaps
the most natural is Euclidean distance: stack the columns of the image in a
vector and identify each digit as a vector in R

256. Then define the distance
function

dist(x, y) = ‖x − y‖2.
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An alternative distance function can be based on the cosine between two
vectors.

In a real application of recognition of handwritten digits, e.g., zip code
reading, there are hardware and real time factors that must be taken into
account. In this section we will describe an idealized setting. The problem is:

Given a set of of manually classified digits (the training set), classify a set of
unknown digits (the test set).

In the US Postal Service database, the training set contains 7291 handwrit-
ten digits, and the test set has 2007 digits.

When we consider the training set digits as vectors or points, then it is
reasonable to assume that all digits of one kind form a cluster of points in a
Euclidean 256-dimensional vector space. Ideally the clusters are well sepa-
rated and the separation depends on how well written the training digits are.

Figure 5.2. The means (centroids)
of all digits in the training set.

In Figure 5.2 we illustrate the means (centroids) of the digits in the train-
ing set. From this figure we get the impression that a majority of the digits
are well written (if there were many badly written digits this would demon-
strate itself as diffuse means). This means that the clusters are rather well
separated. Therefore it is likely that a simple algorithm that computes the
distance from each unknown digit to the means should work rather well.

A simple classification algorithm

Training. Given the training set, compute the mean (centroid) of all
digits of one kind.

Classification. For each digit in the test set, compute the distance to all
ten means, and classify as the closest.
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Figure 5.3. Singular values (top), and the first
three singular images (vectors) computed
using the 131 3s of the training set (bottom).

It turns out that for our test set the success rate of this algorithm is
around 75%, which is not good enough. The reason is that the algorithm
does not use any information about the variation of the digits of one kind.
This variation can be modelled using the SVD.

Let A ∈ R
m×n, with m = 256, be the matrix consisting of all the training

digits of one kind, the 3s, say. The columns of A span a linear subspace of
R

m. However, this subspace cannot be expected to have a large dimension,
because if it had, then the subspaces of the different kinds of digits would
intersect.

The idea now is to ‘model’ the variation within the set of training digits
of one kind using an orthogonal basis of the subspace. An orthogonal basis
can be computed using the SVD, and A can be approximated by a sum of
rank-one matrices (3.9),

A =

k∑

i=1

σiuiv
T
i ,
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for some value of k. Each column in A is an image of a digit 3, and therefore
the left singular vectors ui are an orthogonal basis in the ‘image space of 3s’.
We will refer to the left singular vectors as ‘singular images’. From the
matrix approximation properties of the SVD (Theorem 3.4) we know that
the first singular vector represents the ‘dominating’ direction of the data
matrix. Therefore, if we fold the vectors ui back to images, we expect
the first singular vector to look like a 3, and the following singular images
should represent the dominating variations of the training set around the
first singular image. In Figure 5.3 we illustrate the singular values and the
first three singular images for the training set 3s.

The SVD basis classification algorithm will be based on the following
assumptions.

(1) Each digit (in the training and test sets) is well characterized by a few
of the first singular images of its own kind. The more precise meaning
of ‘a few’ should be investigated by experiment.

(2) An expansion in terms of the first few singular images discriminates
well between the different classes of digits.

(3) If an unknown digit can be better approximated in one particular basis
of singular images, the basis of 3s say, than in the bases of the other
classes, then it is likely that the unknown digit is a 3.

Thus we should compute how well an unknown digit can be represented in
the ten different bases. This can be done by computing the residual vector
in least squares problems of the type

min
αi

∥∥∥∥z −
k∑

i=1

αiui

∥∥∥∥,

where z represents an unknown digit, and ui the singular images. We can
write this problem in the form

min
α

‖z − Ukα‖2,

where Uk =
(
u1 u2 · · · uk

)
. Since the columns of Uk are orthogonal, the

solution of this problem is given by α = UT
k z, and the norm of the residual

vector of the least squares problems is

‖(I − UkU
T
k )z‖2. (5.1)

It is interesting to see how the residual depends on the number of terms in
the basis. In Figure 5.4 we illustrate the approximation of a nicely written 3
in terms of the 3-basis with different numbers of basis images. In Figure 5.5
we show the approximation of a nice 3 in the 5-basis.
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Figure 5.4. Unknown digit (nice 3) and approximations
using 1, 3, 5, 7, and 9 terms in the 3-basis (top).
Relative residual ‖(I − UkUT

k
)z‖2/‖z‖2 in least squares

problem (bottom).

From Figures 5.4 and 5.5 we see that the relative residual is considerably
smaller for the nice 3 in the 3-basis than in the 5-basis.

It is possible to devise several classification algorithm based on the model
of expanding in terms of SVD bases. Below we give a simple variant.

An SVD basis classification algorithm

Training. For the training set of known digits, compute the SVD of each
class of digits, and use k basis vectors for each class.

Classification. For a given test digit, compute its relative residual in all
ten bases. If one residual is significantly smaller than all the others,
classify as that. Otherwise give up.

The algorithm is closely related to the SIMCA method (Wold 1976,
Sjöström and Wold 1980).
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Figure 5.5. Unknown digit (nice 3) and approximations
using 1, 3, 5, 7, and 9 terms in the 5-basis (top).
Relative residual in least squares problem (bottom).

We next give some test results16 for the US Postal Service data set, with
7291 training digits and 2007 test digits (Hastie et al. 2001). In Table 5.1
we give classification results as a function of the number of basis images for
each class.

Table 5.1. Correct classifications as a function of
the number of basis images (for each class).

# basis images 1 2 4 6 8 10

correct (%) 80 86 90 90.5 92 93

16 From Savas (2002).
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Even if there is a very significant improvement in performance compared
to the method where one only used the centroid images, the results are not
good enough, as the best algorithms reach about 97% correct classifications.

5.2. Tangent distance

Apparently it is the large variation in the way digits are written that makes
it difficult to classify correctly. In the preceding subsection we used SVD
bases to model the variation. An alternative model can be based on de-
scribing mathematically what are common and acceptable variations. We
illustrate a few such variations in Figure 5.6. In the first column of modified

Figure 5.6. A digit and acceptable transformations.

digits, the digits appear to be written17 with a thinner and thicker pen, in
the second the digits have been stretched diagonal-wise, in the third they
have been compressed and elongated vertically, and in the fourth they have
been rotated. Such transformations constitute no difficulties for a human
reader and ideally they should be easy to deal with in automatic digit recog-
nition. A distance measure, tangent distance, that is invariant under small
transformations of this type is described in Simard et al. (1993, 2001).

For now we interpret 16 × 16 images as points in R
256. Let p be a fixed

pattern in an image. We shall first consider the case of only one permit-
ted transformation, diagonal stretching, say. The transformation can be
thought of as moving the pattern along a curve in R

256. Let the curve be
parametrized by a real parameter α so that the curve is given by s(p, α),
and in such a way that s(p, 0) = p. In general, such curves are nonlinear,
and can be approximated by the first two terms in the Taylor expansion,

s(p, α) = s(p, 0) +
ds

dα
(p, 0)α + O(α2) ≈ p + tpα,

where tp = ds
dα

(p, 0) is a vector in R
256. By varying α slightly around 0, we

17 Note that the modified digits have not been written manually but using the techniques
described later in this section. The presentation in this section is based on the papers
by Simard, LeCun and Denker (1993) and Simard, LeCun, Denker and Victorri (2001),
and the master’s thesis of Savas (2002).
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make a small movement of the pattern along the tangent at the point p on
the curve. Assume that we have another pattern e that is approximated
similarly,

s(e, α) ≈ e + teα.

Since we consider small movements along the curves as allowed, such small
movements should not influence the distance function. Therefore, ideally
we would like to define our measure of closeness between p and e as the
closest distance between the two curves.

In general we cannot compute the distance between the curves, but we
can use the first-order approximations. Thus we move the patterns indepen-
dently along their respective tangents, until we find the smallest distance.
If we measure this distance in the usual Euclidean norm, we shall solve the
least squares problem

min
αp,αe

‖p + tpαp − e − teαe‖2 = min
αp,αe

∥∥∥∥(p − e) −
(
−tp te

) (
αp

αe

)∥∥∥∥
2

.

Consider now the case when we are allowed to move the pattern p along
l different curves in R

256, parametrized by α = (α1 · · · αl)
T . This is equiv-

alent to moving the pattern on an l-dimensional surface (manifold) in R
256.

Assume that we have two patterns, p and e, each of which can move on its
surface of allowed transformations. Ideally we would like to find the clos-
est distance between the surfaces, but instead, since this is not possible to
compute, we now define a distance measure where we compute the distance
between the two tangent planes of the surface in the points p and e.

As before, the tangent plane is given by the first two terms in the Taylor
expansion of the function s(p, α):

s(p, α) = s(p, 0) +

l∑

i

ds

dαi

(p, 0)αi + O(‖α‖2
2) ≈ p + Tpα,

where Tp is the matrix

Tp =
(

ds
dα1

ds
dα2

· · · ds
dαl

)
,

and the derivatives are all evaluated in the point (p, 0).
Thus the tangent distance between the points p and e is defined as the

smallest possible residual in the least squares problem

min
αp,αe

‖p + Tpαp − e − Teαe‖2 = min
αp,αe

∥∥∥∥(p − e) −
(
−Tp Te

) (
αp

αe

)∥∥∥∥
2

.

The least squares problem can be solved, e.g., using the QR decomposition
of A =

(
−Tp Te

)
. Note that we are in fact not interested in the solution
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itself but only in the norm of the residual. Write the least squares problem
in the form

min
α

‖b − Aα‖2, b = p − e, α =

(
αp

αe

)
.

With the QR decomposition18

A = Q

(
R
0

)
= (Q1 Q2)

(
R
0

)
= Q1R,

the norm of the residual is given by

min
α

‖b − Aα‖2
2 = min

α

∥∥∥∥
(

QT
1 b − Rα
QT

2 b

)∥∥∥∥
2

= min
α

{
‖

(
QT

1 b − Rα
)
‖2
2 + ‖QT

2 b‖2
2

}
= ‖QT

2 b‖2
2.

The case when the matrix A does not have full column rank is easily dealt
with using the SVD. The probability that the columns of the tangent matrix
are almost linearly dependent is high when the two patterns are close.

The most important property of this distance function is that it is invari-
ant under movements of the patterns on the tangent planes. For instance, if
we make a small translation in the x-direction of a pattern, then with this
measure the distance it has been moved is equal to zero.

Simard et al. (1993) and (2001) considered the following transformation:
horizontal and vertical translation, rotation, scaling , parallel and diagonal
hyperbolic transformation, and thickening. If we consider the image pattern
as a function of two variables, p = p(x, y), then the derivative of each
transformation can be expressed as a differentiation operator that is a linear
combination of the derivatives px = dp

dx
and py = dp

dy
. For instance, the

rotation derivative is

ypx − xpy,

and the scaling derivative is

xpx + ypy.

The derivative of the diagonal hyperbolic transformation is

ypx + xpy,

and the ‘thickening’ derivative is

(px)2 + (py)
2.

18 A has dimension 256× 2l; since the number of transformations is usually less than 10,
the linear system is over-determined.
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The algorithm is summarized as follows.

A tangent distance classification algorithm

Training. For each digit in the training set, compute its tangent ma-
trix Tp.

Classification. For each test digit:

• Compute its tangent matrix.

• Compute the tangent distance to all training digits and classify it
as the one with shortest distance.

This algorithm is quite good in terms of classification performance (96.9%
correct classification for the US Postal Service data set (Savas 2002)), but
it is very expensive, since each test digit is compared to all the training
digits. In order to make it competitive it must be combined with some
other algorithm that reduces the number of tangent distance comparisons
to make.

We end this section by remarking that it is necessary to pre-process the
digits in different ways in order to enhance the classification: see LeCun
et al. (1998). For instance, performance is improved if the images are
smoothed (convolved with a Gaussian kernel): see Simard et al. (2001). In
Savas (2002) the derivatives px and py are computed numerically by finite
differences.

6. Eigenvalue methods in data mining

When an Internet search is made using a search engine, there is first a
traditional text processing part, where the aim is to find all the web pages
containing the words of the query. Because of the massive size of the Web,
the number of hits is likely to be much too large to be handled by the user.
Therefore, some measure of quality is needed to sort out the pages that are
likely to be most relevant to the particular query.

When one uses a web search engine, then typically the search phrase is
under-specified.

Example 6.1. A Google search conducted on September 29, 2005, using
the search phrase university, gave as a result links to the following well-
known universities: Harvard , Stanford , Cambridge, Yale, Cornell , Oxford .
The total number of web pages relevant to the search phrase was more than
2 billion.
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Obviously Google uses an algorithm for ranking all the web pages that
agrees rather well with a common-sense quality measure. Loosely speaking,
Google assigns a high rank to a web page if it has inlinks from other pages
that have a high rank. We will see that this ‘self-referencing’ statement
can be formulated mathematically as an eigenvalue equation for a certain
matrix.

In the context of automatic text summarization, similar self-referencing
statements can be formulated mathematically as the defining equations of
a singular value problem. We treat this application briefly in Section 6.3.

6.1. PageRank

It is of course impossible to define a generally valid measure of relevance
that would be acceptable for a majority of users of a search engine. Google
uses the concept of PageRank as a quality measure of web pages. It is
based on the assumption that the number of links to and from a page give
information about the importance of a page. We will give a description of
PageRank based primarily on Page, Brin, Motwani and Winograd (1998).
Concerning Google, see Brin and Page (1998).
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Figure 6.1. Inlinks and outlinks.

Let all web pages be ordered from 1 to n, and let i be a particular web
page. Then Oi will denote the set of pages that i is linked to, the outlinks.
The number of outlinks is denoted by Ni = |Oi|. The set of inlinks, denoted
by Ii, are the pages that have an outlink to i: see Figure 6.1.

In general, a page i can be considered as more important the more inlinks
it has. However, a ranking system based only on the number of inlinks
is easy to manipulate.19 When you design a web page i that (e.g., for
commercial reasons) you would like to be seen by as many as possible, you
could simply create a large number of (information-less and unimportant)
pages that have outlinks to i. In order to discourage this, one may define

19 For an example of attempts to fool a search engine: see Totty and Mangalindan (2003).
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the rank of i in such a way that if a highly ranked page j, has an outlink
to i, this should add to the importance of i in the following way: the rank
of page i is a weighted sum of the ranks of the pages that have outlinks to
i. The weighting is such that the rank of a page j is divided evenly among
its outlinks. The preliminary definition of PageRank is

ri =
∑

j∈Ii

rj

Nj

, i = 1, 2, . . . , n. (6.1)

The definition (6.1) is recursive, so PageRank cannot be computed di-
rectly. The equation can be reformulated as an eigenvalue problem for a
matrix representing the graph of the Internet. Let Q be a square matrix of
dimension n, and let

Qij =

{
1/Nj , if there is a link from j to i,

0, otherwise.

This definition means that row i has nonzero elements in those positions
that correspond to inlinks of i. Similarly, column j has nonzero elements
equal to Nj in those positions that correspond to the outlinks of j, and,
provided that the page has outlinks, the sum of all the elements in column
j is equal to one. In the following symbolic picture of the matrix Q, nonzero
elements are denoted ∗:

j

i




∗
0
...

0 ∗ · · · ∗ ∗ · · ·
...
0
∗




← inlinks

↑
outlinks

Obviously, (6.1) can be written as

λr = Qr, (6.2)

i.e., r is an eigenvector of Q with eigenvalue λ = 1. However, at this point
it is not clear that PageRank is well defined, as we do not know if there
exists an eigenvalue equal to 1.

It turns out that the theory of random walk and Markov chains gives
an intuitive explanation of the concepts involved. Assume that a surfer
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visiting a web page always chooses the next page among the outlinks with
equal probability. This random walk induces a Markov chain with transition
matrix QT : see, e.g., Meyer (2000) and Langville and Meyer (2005a).20 A
Markov chain is a random process for which the next state is determined
completely by the present state; the process has no memory. The eigenvector
r of the transition matrix with eigenvalue 1 corresponds to a stationary
probability distribution for the Markov chain: The element in position i, ri,
is the asymptotic probability that the random walker is at web page i.

The random surfer should never get stuck. In other words, there should
be no web pages without outlinks (such a page corresponds to a zero column
in Q). Therefore the model is modified so that zero columns are replaced
by a constant value in each position (equal probability to go to any other
page in the net). Define the vectors

dj =

{
1, if Nj = 0,

0, otherwise,

for j = 1, . . . , n, and

e =




1
1
...
1


 ∈ R

n.

Then the modified matrix is defined by

P = Q +
1

n
edT . (6.3)

Now P is a proper column-stochastic matrix : it has nonnegative elements
(P ≥ 0), and

eT P = eT . (6.4)

By analogy with (6.2), we would like to define the PageRank vector as a
unique eigenvector of P with eigenvalue 1,

Pr = r.

However, uniqueness is still not guaranteed. To ensure this, the directed
graph corresponding to the matrix must be strongly connected : given any
two nodes (Ni, Nj), in the graph, there must exist a path leading from Ni

20 Note that we use a slightly different notation to that common in the theory of stochastic
processes.
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to Nj . In matrix terms, P must be irreducible.21 Equivalently, there must
not exist any subgraph that has no outlinks.

The uniqueness of the eigenvalue is now guaranteed by the Perron–Fro-
benius theorem; we state it for the special case treated here.

Theorem 6.2. Let A be an irreducible column-stochastic matrix. Then
the largest eigenvalue in magnitude is equal to 1. There is a unique cor-
responding eigenvector r satisfying r > 0, and ‖r‖1 = 1; this is the only
eigenvector that is nonnegative. If A > 0, then |λi| < 1, i = 2, 3, . . . , n.

Proof. Because A is column-stochastic we have eT A = eT , which means
that 1 is an eigenvalue of A. The rest of the statement can be proved using
Perron–Frobenius theory (Meyer 2000, Chapter 8).

Given the size of the Internet and reasonable assumptions about its struc-
ture, it is highly probable that the link graph is not strongly connected,
which means that the PageRank eigenvector of P is not well defined. To
ensure connectedness, i.e., to make it impossible for the random walker to
get trapped in a subgraph, one can add, artificially, a link from every web
page to all the other. In matrix terms, this can be made by taking a convex
combination of P and a rank-one matrix,

A = αP + (1 − α)
1

n
eeT , (6.5)

for some α satisfying 0 ≤ α ≤ 1. Obviously A is irreducible (since A > 0)
and column-stochastic:

eT A = αeT P + (1 − α)
1

n
eT eeT = αeT + (1 − α)eT = eT .

The random walk interpretation of the additional rank-one term is that each
time step a page is visited, the surfer will jump to any page in the whole
web with probability 1 − α (sometimes referred to as teleportation).

For the convergence of the numerical eigenvalue algorithm, it is essential
to know how the eigenvalues of P are changed by the rank one modifica-
tion (6.5).

Proposition 6.3. Given that the eigenvalues of the column-stochastic
matrix P are {1, λ2, λ3 . . . , λn}, the eigenvalues of A = αP + (1 − α) 1

n
eeT

are {1, αλ2, αλ3, . . . , αλn}.
Several proofs of the proposition have been published (Haveliwala and

Kamvar 2003b, Langville and Meyer 2005a). An elementary and simple
variant (Eldén 2004a) is given here.

21 A matrix P is reducible if there exist a permutation matrix Π such that ΠPΠT =
`

X Y

0 Z

´

, where both X and Z are square matrices.
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Proof. Define ê to be e normalized to Euclidean length 1, and let U1 ∈
R

n×(n−1) be such that U =
(
ê U1

)
is orthogonal. Then, since êT P = êT ,

UT PU =

(
êT P
UT

1 P

) (
ê U1

)
=

(
êT

UT
1 P

) (
ê U1

)

=

(
êT ê êT U1

UT
1 P ê UT

1 P T U1

)
=

(
1 0
w T

)
, (6.6)

where w = UT
1 P ê, and T = UT

1 P T U1. Since we have made a similarity
transformation, the matrix T has the eigenvalues λ2, λ3, . . . , λn. We further
have

UT v =

(
1/
√

n eT v
UT

1 v

)
=

(
1/
√

n
UT

1 v

)
.

Therefore,

UT AU = UT (αP + (1 − α)veT )U

= α

(
1 0
w T

)
+ (1 − α)

(
1/
√

n
UT

1 v

) (√
n 0

)

= α

(
1 0
w T

)
+ (1 − α)

(
1 0√

n UT
1 v 0

)
=:

(
1 0
w1 αT

)
.

The statement now follows immediately.

This means that even if P has a multiple eigenvalue equal to 1, the second-
largest eigenvalue in magnitude of A is always equal to α.

The vector e in (6.5) can be replaced by a nonnegative vector v with
‖v‖1 = 1 that can be chosen in order to make the search biased towards
certain kinds of web pages. Therefore, it is referred to as a personalization
vector (Page et al. 1998, Haveliwala and Kamvar 2003a). The vector v can
also be used for avoiding manipulation by so-called link farms (Langville
and Meyer 2005a). Proposition 6.3 also holds in this case.

We want to solve the eigenvalue problem

Ar = r,

where r is normalized, ‖r‖1 = 1. Because of the sparsity and the dimension
of A it is not possible to use sparse eigenvalue algorithms that require the
storage of more than a very few vectors. The only viable method so far for
PageRank computations on the whole Web seems to be the power method.

It is well known (see, e.g., Golub and Van Loan (1996, Section 7.3)) that
the rate of convergence of the power method depends on the ratio of the
second-largest and the largest eigenvalue in magnitude. Here we have

|λ(k) − 1| = O(αk),

due to Proposition 6.3.
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In view of the huge dimension of the Google matrix, it is nontrivial to
compute the matrix-vector product y = Az, where A = αP + (1 − α) 1

n
eeT .

First, we see that if the vector z satisfies ‖z‖1 = eT z = 1, then

‖y‖1 = eT y = eT Az = eT z = 1, (6.7)

since A is column-stochastic (eT A = eT ). Therefore normalization of the
vectors produced in the power iteration is unnecessary.

Then recall that P was constructed from the actual link matrix Q as

P = Q +
1

n
edT ,

where the row vector d has an element 1 in all those positions that corre-
spond to web pages with no outlinks, see (6.3). This means that to represent
P as a sparse matrix, we insert a large number of full vectors in Q, each of
the same dimension as the total number of web pages. Consequently, one
cannot afford to represent P explicitly. Let us look at the multiplication
y = Az in some more detail:

y = α

(
Q +

1

n
edT

)
z +

(1 − α)

n
e(eT z) = αQz + β

1

n
e, (6.8)

where

β = αdT z + (1 − α)eT z.

However, we do not need to compute β from this equation. Instead we can
use (6.7) in combination with (6.8):

1 = eT (αQz) + βeT

(
1

n
e

)
= eT (αQz) + β.

Thus, we have β = 1 − ‖αQz‖1. An extra bonus is that we do not use the
vector d, i.e., we do not need to know which pages lack outlinks.

The following Matlab code implements the matrix vector multiplication.

yhat=alpha*Q*z;

beta=1-norm(yhat,1);

y=yhat+beta*v;

residual=norm(y-z,1);

Here v = (1/n) e, or a personalized teleportation vector: see p. 372.
From Proposition 6.3 we know that the second eigenvalue of the Google

matrix satisfies λ2 = α. A typical value of α is 0.85. Approximately k = 57
iterations are needed to make the factor 0.85k equal to 10−4. This is reported
(Langville and Meyer 2005a) to be close the number of iterations used by
Google.
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In view of the fact that one PageRank calculation using the power method
can take several days, several enhancements of the iteration procedure have
been proposed. Kamvar, Haveliwala and Golub (2003a) describe an adap-
tive method that checks the convergence of the components of the PageRank
vector and avoids performing the power iteration for those components.
The block structure of the Web is used in Kamvar, Haveliwala, Manning
and Golub (2003b), and speed-ups of a factor 2 have been reported. An
acceleration method based on Aitken extrapolation is discussed in Kam-
var, Haveliwala, Manning and Golub (2003c). Aggregation methods are
discussed in several papers by Langville and Meyer and in Ipsen and Kirk-
land (2006).

If the PageRank is computed for a subset of the Internet, one particular
domain, say, then the matrix A may be of sufficiently small dimension to use
methods other than the power method: e.g., the Arnoldi method (Golub
and Greif 2004).

A variant of PageRank is proposed in Gyöngyi, Garcia-Molina and Peder-
sen (2004). Further properties of the PageRank matrix are given in Serra-
Capizzano (2005).

6.2. HITS

Another method based on the link structure of the Web was introduced at
the same time as PageRank (Kleinberg 1999). It is called HITS (hyper-
text induced topic search), and is based on the concepts of authorities and
hubs. An authority is a web page with several inlinks and a hub has several
outlinks. The basic idea is: good hubs point to good authorities and good
authorities are pointed to by good hubs. Each web page is assigned both a
hub score y and an authority score x.

Let L be the adjacency matrix of the directed web graph. Then two
equations are given that mathematically define the relation between the
two scores, based on the basic idea:

x = LT y, y = Lx. (6.9)

The algorithm for computing the scores is the power method, which con-
verges to the left and right singular vectors corresponding to the largest
singular value of L. In the implementation of HITS it is not the adja-
cency matrix of the whole web that is used, but of all the pages relevant to
the query.

There is now an extensive literature on PageRank, HITS and other rank-
ing methods. For overviews, see Langville and Meyer (2005b, 2005c) and
Berkin (2005). A combination of HITS and PageRank has been proposed
in Lempel and Moran (2001).

Obviously the ideas underlying PageRank and HITS are not restricted
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to web applications, but can be applied to other network analyses. For
instance, a variant of the HITS method was recently used in a study of
Supreme Court precedent (Fowler and Jeon 2005). A generalization of HITS
is given in Blondel, Gajardo, Heymans, Senellart and Dooren (2004), which
also treats synonym extraction.

6.3. Text summarization

Because of the explosion in the amount of textual information available,
there is a need to develop automatic procedures for text summarization.
One typical situation is when a web search engine presents a small amount
of text from each document that matches a certain query. Another relevant
area is the summarization of news articles.

Automatic text summarization is an active research field with connec-
tions to several other research areas such as information retrieval, natural
language processing, and machine learning. Informally, the goal of text sum-
marization is to extract content from a text document, and present the most
important content to the user in a condensed form and in a manner sensi-
tive to the user’s or application’s need (Mani 2001). In this section we will
have a considerably less ambitious goal: we present a method (Zha 2002),
related to HITS, for automatically extracting key words and key sentences
from a text. There are connections to the vector space model in information
retrieval, and to the concept of PageRank.

Consider a text from which we want to extract key words and key sen-
tences. As one of the preprocessing steps, one should perform stemming
and eliminate stop words. Similarly, if the text carries special symbols,
e.g., mathematics, or mark-up language tags (HTML, LATEX), it may be
necessary to remove those. Since we want to compare word frequencies in
different sentences, we must consider each sentence as a separate document
(in the terminology of information retrieval). After the preprocessing has
been done, we parse the text, using the same type of parser as in infor-
mation retrieval. This way a term-document matrix is prepared, which in
this section we will refer to as a term-sentence matrix. Thus we have a
matrix A ∈ R

m×n, where m denotes the number of different terms, and n
the number of sentences. The element aij is defined as the frequency22 of
term i in document j.

The basis of the procedure in Zha (2002) is the simultaneous, but separate
ranking of the terms and the sentences. Thus, term i is given a nonnegative
saliency score, denoted ui. The higher the saliency score, the more impor-
tant the term. The saliency score of sentence j is denoted by vj .

22 Naturally, a term and document weighting scheme (see Berry and Browne (2005, Sec-
tion 3.2.1)) should be used.
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The assignment of saliency scores is made based on the mutual reinforce-
ment principle (Zha 2002):

A term should have a high saliency score if it appears in many sentences with high
saliency scores. A sentence should have a high saliency score if it contains many
words with high saliency scores.

More precisely, we assert that the saliency score of term i is proportional to
the sum of the scores of the sentences where it appears; in addition, each
term is weighted by the corresponding matrix element,

ui ∝
n∑

j=1

aijvj , i = 1, 2, . . . , m.

Similarly, the saliency score of sentence j is defined to be proportional to
the scores of its words, weighted by the corresponding aij ,

vj ∝
m∑

i=1

aijui, j = 1, 2, . . . , n.

Collecting the saliency scores in two vectors, u ∈ R
m, and v ∈ R

n, these
two equations can be written as

σuu = Av, (6.10)

σvv = AT u, (6.11)

where σu and σv are proportionality constants. In fact, the constants must
be equal: inserting one equation into the other, we get

σu u =
1

σv

AAT u,

σv v =
1

σu

AT Av,

which shows that u and v are singular vectors corresponding to the same sin-
gular value. If we choose the largest singular value, then we are guaranteed
that the components of u and v are nonnegative.

Example 6.4. We created a term-sentence matrix using (a slightly earlier
version of) the text in Section 4. Since the text is written using LATEX, we
first had to remove all LATEX typesetting commands. This was done using
a lexical scanner called detex.23 Then the text was stemmed and stop
words were removed. A term-sentence matrix A was constructed using a
text parser: there turned out to be 435 terms in 218 sentences. The first
singular vectors were computed in Matlab.

23 http://www.cs.purdue.edu/homes/trinkle/detex/
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By determining the ten largest components of u1, and using the dictionary
produced by the text parser, we found that the following ten words are the
most important in the section.

document , term, matrix , approximation (approximate), query , vector , space,
number , basis, cluster .

The three most important sentences are, in order, as follows.

(1) Latent semantic indexing (LSI) ‘is based on the assumption that there
is some underlying latent semantic structure in the data . . . that is cor-
rupted by the wide variety of words used . . . ’ (quoted from Park, Jeon
and Rosen (2001)) and that this semantic structure can be enhanced by
projecting the data (the term-document matrix and the queries) onto
a lower-dimensional space using the singular value decomposition.

(2) In view of the large approximation error in the truncated SVD approx-
imation of the term-document matrix, one may question whether the
‘optimal’ singular vectors constitute the best basis for representing the
term-document matrix.

(3) For example, one can define the elements in A by

aij = fij log(n/ni),

where fij is the term frequency, the number of times term i appears
in document j, and ni is the number of documents that contain term
i (inverse document frequency).

It is apparent that this method prefers long sentences. On the other hand,
these sentences are undeniably key sentences for the text.

7. New directions

Multidimensional arrays (tensors) have been used for data analysis in psy-
chometrics and chemometrics since the 1960s; for overviews see, e.g., Kroo-
nenberg (1992), Smilde, Bro and Geladi (2004) and the ‘Three-Mode Com-
pany’ web page.24 In fact, ‘three-mode analysis’ appears to be a standard
tool in those areas. Only in recent years has there been an increased interest
among the numerical linear algebra community in tensor computations, es-
pecially for applications in signal processing and data mining. A particular
generalization of the SVD, the higher order SVD (HOSVD), was studied in
Lathauwer, Moor and Vandewalle (2000a).25 This is a tensor decomposition

24 http://three-mode.leidenuniv.nl/.
25 However, related concepts had already been considered in Tucker (1964) and (1966),

and are referred to as the Tucker model in psychometrics.



378 L. Eldén

in terms of orthogonal matrices, which ‘orders’ the tensor in a way similar
to that in which the singular values of the SVD are ordered, but which
does not satisfy an Eckart–Young optimality property (Theorem 3.4); see
Lathauwer, Moor and Vandewalle (2000b). Owing to the ordering property,
this decomposition can be used for compression and dimensionality reduc-
tion, and it has been successfully applied to face recognition (Vasilescu and
Terzopoulos 2002a, 2002b, 2003).

The SVD expansion (3.9) of a matrix, as a sum of rank-one matrices,
has been generalized to tensors (Harshman 1970, Carroll and Chang 1970),
and is called the PARAFAC/CANDECOMP model. For overviews, see Bro
(1997) and Smilde et al. (2004). This does not give an exact decomposition
of the tensor, and its theoretical properties are much more involved (e.g.,
degeneracies occur – see Kruskal (1976, 1977), Bro (1997) and Sidiropoulos
and Bro (2000)). A recent application of PARAFAC to network analysis is
presented in Kolda, Bader and Kenny (2005a), where the hub and authority
scores of the HITS method are complemented with topic scores for the
anchor text of the web pages.

Recently several papers have appeared where standard techniques in data
analysis and machine learning are generalized to tensors: see, e.g., Yan, Xu,
Yang, Zhang, Tang and Zhang (2005) and Cai, He and Han (2005).

It is not uncommon in the data mining/machine learning literature for
data compression and rank reduction problems to be presented as matrix
problems, while they can in fact be considered as tensor approximation
problems: for examples see Tenenbaum and Freeman (2000) and Ye (2005).

Novel data mining applications, especially in link structure analysis, are
presented and suggested in Kolda, Brown, Corones, Critchlow, Eliassi-
Rad, Getoor, Hendrickson, Kumar, Lambert, Matarazzo, McCurley, Merrill,
Samatova, Speck, Srikant, Thomas, Wertheimer and Wong (2005b).
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